Enhancing the visualization process with principal component analysis to support the exploration of trends
نویسندگان
چکیده
This paper describes the integration of the Principal Component Analysis into the Visualization Process. Although, the combination of Principal Component Analysis (PCA) and visual methods is a common approach to the analysis of high-dimensional datasets, it is mostly limited to a pure preprocessing step for dimension reduction. In this paper we will discuss, how PCA results can be used to control all steps of the visualization pipeline to generate more effective visual representations, and thus, a higher degree of understanding of the PCA values as well as of original data.
منابع مشابه
Exploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images
Recent studies showed that remote sensing (RS) is an effective, efficient and reliable technique used in almost all the areas of earth sciences. Remote sensing as being a technique started with aerial photographs and then developed employing the multi-spectral satellite images. Nowadays, it benefits from hyper-spectral, RADAR and LIDAR data as well. This potential has widen its applicability in...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملPrediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...
متن کاملMixed Qualitative/Quantitative Dynamic Simulation of Processing Systems
In this article the methodology proposed by Li and Wang for mixed qualitative and quantitative modeling and simulation of temporal behavior of processing unit is reexamined and extended to more complex case. The main issue of their approach considers the multivariate statistics of principal component analysis (PCA), along with clustered fuzzy digraphs and reasoning. The PCA and fuz...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کامل